Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

You are using software which is blocking our advertisements (adblocker).

As we provide the news for free, we are relying on revenues from our banners. So please disable your adblocker and reload the page to continue using this site.
Thanks!

Click here for a guide on disabling your adblocker.

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

Research on detecting the early flowering stage of tea Chrysanthemum

Detecting the flowering stage of tea chrysanthemum is a key mechanism of the selective chrysanthemum harvesting robot. However, under complex, unstructured scenarios, such as illumination variation, occlusion, and overlapping, detecting tea chrysanthemum at a specific flowering stage is a real challenge. This paper proposes a highly fused, lightweight detection model named the Fusion-YOLO (F-YOLO) model.

First, cut out and mosaic input components are equipped, with which the fusion module can better understand the features of the chrysanthemum through slicing. In the backbone component, the Cross-Stage Partial DenseNet (CSPDenseNet) network is used as the main network, and feature fusion modules are added to maximize the gradient flow difference. Next, in the neck component, the Cross-Stage Partial ResNeXt (CSPResNeXt) network is taken as the main network to truncate the redundant gradient flow.

Finally, in the head component, the multi-scale fusion network is adopted to aggregate the parameters of two different detection layers from different backbone layers. The results show that the F-YOLO model is superior to state-of-the-art technologies in terms of object detection, that this method can be deployed on a single mobile GPU, and that it will be one of key technologies to build a selective chrysanthemum harvesting robot system in the future. 

Read the complete research at www.mdpi.com.

Qi, C.; Nyalala, I.; Chen, K. Detecting the Early Flowering Stage of Tea Chrysanthemum Using the F-YOLO Model. Agronomy 2021, 11, 834. https://doi.org/10.3390/agronomy11050834 

Publication date: