Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

You are using software which is blocking our advertisements (adblocker).

As we provide the news for free, we are relying on revenues from our banners. So please disable your adblocker and reload the page to continue using this site.
Thanks!

Click here for a guide on disabling your adblocker.

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

Researchers explore the origin of hose-in-hose flowers

Plants bearing double flowers have long been cultivated as ornamental plants. Hose-in-hose flowers, bearing 2-whorled corolla tubes in whorls 1 and 2, are uncommon but recur in Sinningia (Gesnerioideae, Gesneriaceae). In this study, researchers selected 15 hose-in-hose cultivars as materials to explore the underlying molecular and genetic mechanisms of this floral architecture.

Researchers found that they originated from different hybridization events within the Dircaea clade. Three B-class MADS-box genes were globally expressed in all floral whorls, but only GLOBOSA1 (GLO1) has accumulated a dominant mutation, i.e., the insertion of a hAT-like miniature inverted-repeat transposable element (MITE) into its promoter, that co-segregated with the hose-in-hose phenotype. In addition, all 15 hose-in-hose cultivars contained the same dominant GLO1 allele. Transient gene expression assays confirmed the role of this MITE insertion in up-regulating the promoter activity of GLO1 by providing several cis-regulatory elements. Genetic transformation in heterologous Chirita pumila (Didymocarpoideae, Gesneriaceae) verified that this dominant GLO1 allele is sufficient to confer the hose-in-hose phenotype.

The researchers further demonstrated that both the GLO1 allele and the hAT-like MITE descended from wild S. cardinalis with single flowers. This study highlights the significance of wide hybridization in frequent gains of the dominant GLO1 allele and thereafter repeated occurrence of hose-in-hose flowers in Sinningia.

Yang, Xia & Liu, Qi & Wang, Miao-Miao & Wang, Xiao-Ya & Han, Meng-Qi & Fangpu, Liu & Lü, Tian-Feng & Liu, Jing & Wang, Yin-Zheng. (2024). A single dominant GLOBOSA allele accounts for repeated origins of hose-in-hose flowers in Short title: A single origin of multiple hose-in-hose flowers 4 5. The Plant Cell. DOI: 10.1093/plcell/koae283/7826170.

Source: Research Gate

Publication date: